Artificial General Intelligence

Comentários · 113 Visualizações

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or exceeds human cognitive capabilities throughout a large range of cognitive jobs.

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities across a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly surpasses human cognitive abilities. AGI is considered one of the meanings of strong AI.


Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and advancement tasks throughout 37 nations. [4]

The timeline for achieving AGI stays a topic of ongoing argument among researchers and experts. Since 2023, some argue that it might be possible in years or years; others keep it may take a century or longer; a minority think it may never be accomplished; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed concerns about the rapid development towards AGI, recommending it could be accomplished sooner than lots of anticipate. [7]

There is dispute on the specific meaning of AGI and regarding whether contemporary big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common topic in science fiction and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have mentioned that mitigating the danger of human extinction presented by AGI needs to be a global top priority. [14] [15] Others find the development of AGI to be too remote to provide such a danger. [16] [17]

Terminology


AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general smart action. [21]

Some academic sources book the term "strong AI" for computer programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to fix one specific problem however does not have basic cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as people. [a]

Related ideas consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more typically intelligent than human beings, [23] while the idea of transformative AI connects to AI having a large impact on society, for example, comparable to the agricultural or commercial revolution. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For example, a qualified AGI is defined as an AI that surpasses 50% of skilled adults in a wide range of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined but with a threshold of 100%. They consider big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular methods. [b]

Intelligence traits


Researchers generally hold that intelligence is required to do all of the following: [27]

factor, usage strategy, resolve puzzles, and make judgments under unpredictability
represent understanding, including good sense understanding
strategy
learn
- interact in natural language
- if essential, incorporate these abilities in conclusion of any offered objective


Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about additional characteristics such as imagination (the capability to form unique psychological images and concepts) [28] and autonomy. [29]

Computer-based systems that show many of these abilities exist (e.g. see computational imagination, automated reasoning, choice support group, robot, evolutionary computation, smart agent). There is dispute about whether modern AI systems possess them to an appropriate degree.


Physical characteristics


Other capabilities are considered preferable in intelligent systems, as they may affect intelligence or help in its expression. These include: [30]

- the capability to sense (e.g. see, hear, etc), and
- the capability to act (e.g. relocation and manipulate items, change area to check out, etc).


This includes the ability to detect and respond to threat. [31]

Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate things, change location to check out, forum.batman.gainedge.org and so on) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) might currently be or become AGI. Even from a less optimistic point of view on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, offered it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never been proscribed a particular physical embodiment and therefore does not demand a capacity for mobility or standard "eyes and ears". [32]

Tests for human-level AGI


Several tests suggested to verify human-level AGI have been considered, including: [33] [34]

The idea of the test is that the maker has to try and pretend to be a male, by responding to concerns put to it, and it will just pass if the pretence is reasonably convincing. A considerable portion of a jury, who ought to not be professional about devices, should be taken in by the pretence. [37]

AI-complete problems


A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to implement AGI, because the option is beyond the abilities of a purpose-specific algorithm. [47]

There are many issues that have been conjectured to need general intelligence to fix along with human beings. Examples consist of computer system vision, natural language understanding, and dealing with unexpected scenarios while solving any real-world issue. [48] Even a specific job like translation needs a machine to check out and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully recreate the author's initial intent (social intelligence). All of these issues require to be fixed all at once in order to reach human-level device performance.


However, numerous of these jobs can now be performed by modern-day large language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on lots of standards for reading comprehension and visual thinking. [49]

History


Classical AI


Modern AI research started in the mid-1950s. [50] The very first generation of AI scientists were encouraged that synthetic general intelligence was possible and that it would exist in simply a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]

Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could develop by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the project of making HAL 9000 as realistic as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of creating 'synthetic intelligence' will significantly be fixed". [54]

Several classical AI projects, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar job, were directed at AGI.


However, in the early 1970s, it became apparent that scientists had grossly undervalued the difficulty of the task. Funding firms became hesitant of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual conversation". [58] In reaction to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI scientists who predicted the impending accomplishment of AGI had been misinterpreted. By the 1990s, AI researchers had a credibility for making vain promises. They ended up being reluctant to make predictions at all [d] and avoided reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI accomplished business success and academic respectability by concentrating on specific sub-problems where AI can produce verifiable outcomes and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology market, and research study in this vein is greatly funded in both academia and industry. Since 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a fully grown stage was expected to be reached in more than ten years. [64]

At the turn of the century, many mainstream AI researchers [65] hoped that strong AI could be developed by combining programs that solve different sub-problems. Hans Moravec composed in 1988:


I am positive that this bottom-up path to expert system will one day fulfill the traditional top-down path more than half way, prepared to offer the real-world skills and the commonsense understanding that has actually been so frustratingly elusive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven joining the 2 efforts. [65]

However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:


The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is truly only one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, since it looks as if getting there would just total up to uprooting our symbols from their intrinsic meanings (therefore simply minimizing ourselves to the functional equivalent of a programmable computer). [66]

Modern synthetic general intelligence research study


The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to please goals in a wide variety of environments". [68] This type of AGI, identified by the capability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal artificial intelligence. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest lecturers.


As of 2023 [update], a little number of computer scientists are active in AGI research, and numerous add to a series of AGI conferences. However, significantly more scientists are interested in open-ended knowing, [76] [77] which is the concept of enabling AI to continuously learn and innovate like humans do.


Feasibility


Since 2023, the development and prospective achievement of AGI stays a subject of extreme dispute within the AI neighborhood. While conventional consensus held that AGI was a distant goal, current advancements have actually led some researchers and industry figures to declare that early kinds of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would need "unforeseeable and essentially unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level expert system is as broad as the gulf in between existing area flight and practical faster-than-light spaceflight. [80]

An additional obstacle is the absence of clearness in defining what intelligence requires. Does it need consciousness? Must it show the ability to set goals along with pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as planning, thinking, and causal understanding needed? Does intelligence require clearly duplicating the brain and its particular faculties? Does it require feelings? [81]

Most AI researchers think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that the present level of development is such that a date can not accurately be forecasted. [84] AI specialists' views on the feasibility of AGI wax and subside. Four polls performed in 2012 and 2013 recommended that the average price quote amongst professionals for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the poll, with the mean being 2081. Of the experts, 16.5% addressed with "never ever" when asked the same concern but with a 90% confidence instead. [85] [86] Further current AGI development factors to consider can be found above Tests for validating human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong predisposition towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft researchers published a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could reasonably be deemed an early (yet still incomplete) variation of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of people on the Torrance tests of innovative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of basic intelligence has actually already been attained with frontier models. They composed that unwillingness to this view originates from 4 main reasons: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]

2023 also marked the emergence of large multimodal designs (big language models capable of processing or producing several modalities such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this ability to think before responding represents a new, extra paradigm. It improves design outputs by investing more computing power when producing the answer, whereas the design scaling paradigm enhances outputs by increasing the design size, training data and training compute power. [93] [94]

An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had actually achieved AGI, stating, "In my opinion, we have currently achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than many humans at most tasks." He likewise attended to criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their knowing procedure to the scientific approach of observing, hypothesizing, and validating. These statements have sparked argument, as they depend on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate exceptional flexibility, they may not fully fulfill this standard. Notably, Kazemi's remarks came shortly after OpenAI removed "AGI" from the terms of its collaboration with Microsoft, triggering speculation about the business's strategic intents. [95]

Timescales


Progress in expert system has actually historically gone through periods of rapid development separated by durations when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to develop space for further development. [82] [98] [99] For instance, the computer system hardware readily available in the twentieth century was not sufficient to implement deep learning, which needs big numbers of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a genuinely flexible AGI is built differ from ten years to over a century. Since 2007 [update], the consensus in the AGI research study community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have offered a wide variety of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such opinions found a predisposition towards predicting that the start of AGI would happen within 16-26 years for modern-day and historical predictions alike. That paper has actually been slammed for how it categorized opinions as expert or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the traditional approach utilized a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep learning wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in very first grade. An adult pertains to about 100 typically. Similar tests were brought out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model efficient in performing numerous diverse jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]

In the same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to comply with their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 different jobs. [110]

In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI models and demonstrated human-level performance in tasks spanning multiple domains, such as mathematics, coding, and law. This research sparked a dispute on whether GPT-4 could be considered an early, insufficient variation of synthetic basic intelligence, stressing the requirement for additional expedition and examination of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton stated that: [112]

The idea that this stuff might in fact get smarter than people - a few people believed that, [...] But the majority of people thought it was way off. And I thought it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis similarly stated that "The development in the last few years has actually been quite extraordinary", which he sees no reason that it would decrease, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would can passing any test a minimum of along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "strikingly plausible". [115]

Whole brain emulation


While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can act as an alternative technique. With entire brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational device. The simulation model must be sufficiently faithful to the initial, so that it acts in virtually the very same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been talked about in expert system research [103] as a technique to strong AI. Neuroimaging innovations that could deliver the needed in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will become offered on a similar timescale to the computing power required to imitate it.


Early approximates


For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be required, given the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at various price quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a procedure used to rate current supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He used this figure to predict the required hardware would be readily available sometime in between 2015 and 2025, if the exponential development in computer power at the time of composing continued.


Current research


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually established a particularly comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The artificial neuron model assumed by Kurzweil and used in many present synthetic neural network applications is basic compared with biological neurons. A brain simulation would likely have to capture the comprehensive cellular behaviour of biological neurons, presently comprehended just in broad overview. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers a number of orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are known to contribute in cognitive processes. [125]

An essential criticism of the simulated brain method stems from embodied cognition theory which asserts that human embodiment is a necessary aspect of human intelligence and is needed to ground meaning. [126] [127] If this theory is appropriate, any completely functional brain design will require to encompass more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unknown whether this would suffice.


Philosophical viewpoint


"Strong AI" as defined in approach


In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between 2 hypotheses about artificial intelligence: [f]

Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (only) imitate it thinks and has a mind and consciousness.


The very first one he called "strong" since it makes a more powerful statement: it presumes something special has actually happened to the maker that surpasses those capabilities that we can check. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" machine, but the latter would also have subjective mindful experience. This usage is likewise typical in academic AI research study and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is required for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most expert system scientists the concern is out-of-scope. [130]

Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it really has mind - certainly, there would be no chance to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 different things.


Consciousness


Consciousness can have numerous meanings, and some aspects play substantial functions in sci-fi and the principles of artificial intelligence:


Sentience (or "phenomenal awareness"): The capability to "feel" understandings or emotions subjectively, as opposed to the capability to factor about understandings. Some thinkers, such as David Chalmers, use the term "consciousness" to refer solely to incredible awareness, which is approximately comparable to life. [132] Determining why and how subjective experience emerges is referred to as the difficult problem of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had attained sentience, though this claim was extensively disputed by other experts. [135]

Self-awareness: To have mindful awareness of oneself as a different person, specifically to be knowingly conscious of one's own thoughts. This is opposed to just being the "topic of one's believed"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the same method it represents everything else)-but this is not what individuals generally mean when they use the term "self-awareness". [g]

These qualities have a moral measurement. AI sentience would give rise to concerns of welfare and legal security, likewise to animals. [136] Other elements of consciousness related to cognitive capabilities are also pertinent to the principle of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social frameworks is an emerging issue. [138]

Benefits


AGI could have a variety of applications. If oriented towards such objectives, AGI might assist alleviate different issues on the planet such as appetite, poverty and health issue. [139]

AGI might enhance efficiency and performance in the majority of tasks. For example, in public health, AGI could accelerate medical research study, significantly against cancer. [140] It could take care of the senior, [141] and equalize access to fast, top quality medical diagnostics. It might use fun, low-cost and tailored education. [141] The requirement to work to subsist could end up being outdated if the wealth produced is correctly redistributed. [141] [142] This also raises the question of the location of human beings in a drastically automated society.


AGI might likewise assist to make rational choices, and to prepare for and prevent catastrophes. It could likewise assist to gain the advantages of potentially disastrous innovations such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which could be challenging if the Vulnerable World Hypothesis turns out to be real), [144] it could take measures to considerably minimize the risks [143] while reducing the impact of these procedures on our quality of life.


Risks


Existential risks


AGI may represent multiple types of existential threat, which are risks that threaten "the early extinction of Earth-originating smart life or the long-term and drastic destruction of its potential for preferable future advancement". [145] The threat of human extinction from AGI has actually been the topic of lots of disputes, but there is also the possibility that the advancement of AGI would cause a completely problematic future. Notably, it might be used to spread and preserve the set of values of whoever develops it. If mankind still has moral blind spots comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI might facilitate mass security and indoctrination, which might be utilized to produce a steady repressive around the world totalitarian regime. [147] [148] There is likewise a risk for the makers themselves. If devices that are sentient or otherwise worthy of moral consideration are mass created in the future, participating in a civilizational path that indefinitely disregards their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve humankind's future and help in reducing other existential threats, Toby Ord calls these existential threats "an argument for continuing with due caution", not for "deserting AI". [147]

Risk of loss of control and human termination


The thesis that AI postures an existential danger for human beings, and that this threat needs more attention, is controversial but has been endorsed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking criticized widespread indifference:


So, facing possible futures of incalculable benefits and risks, the professionals are undoubtedly doing whatever possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll show up in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The potential fate of humanity has sometimes been compared to the fate of gorillas threatened by human activities. The comparison states that greater intelligence allowed humanity to control gorillas, which are now vulnerable in ways that they might not have expected. As an outcome, the gorilla has actually become an endangered species, not out of malice, but merely as a collateral damage from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humanity and that we need to take care not to anthropomorphize them and interpret their intents as we would for human beings. He stated that people will not be "wise sufficient to develop super-intelligent devices, yet unbelievably dumb to the point of providing it moronic goals without any safeguards". [155] On the other side, the principle of instrumental convergence suggests that almost whatever their goals, intelligent agents will have reasons to attempt to make it through and acquire more power as intermediary actions to achieving these objectives. Which this does not require having emotions. [156]

Many scholars who are concerned about existential danger supporter for more research into resolving the "control issue" to respond to the concern: what types of safeguards, algorithms, or architectures can developers implement to maximise the possibility that their recursively-improving AI would continue to act in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could cause a race to the bottom of security preventative measures in order to release products before rivals), [159] and making use of AI in weapon systems. [160]

The thesis that AI can present existential risk likewise has critics. Skeptics typically say that AGI is not likely in the short-term, or that issues about AGI distract from other issues related to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of individuals beyond the innovation market, existing chatbots and LLMs are already perceived as though they were AGI, causing further misunderstanding and worry. [162]

Skeptics sometimes charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some scientists believe that the communication campaigns on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, issued a joint statement asserting that "Mitigating the threat of termination from AI need to be an international concern along with other societal-scale dangers such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of workers might see a minimum of 50% of their jobs affected". [166] [167] They consider office employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, ability to make decisions, to user interface with other computer tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]

Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. So far, the trend appears to be toward the second choice, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will need governments to embrace a universal fundamental earnings. [168]

See likewise


Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain
AI effect
AI security - Research location on making AI safe and beneficial
AI positioning - AI conformance to the intended objective
A.I. Rising - 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated machine knowing - Process of automating the application of machine learning
BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of synthetic intelligence to play different games
Generative synthetic intelligence - AI system efficient in generating material in response to prompts
Human Brain Project - Scientific research project
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task knowing - Solving numerous device discovering jobs at the very same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or form of expert system.
Transfer knowing - Machine learning method.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specially created and enhanced for artificial intelligence.
Weak expert system - Form of expert system.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese room.
^ AI founder John McCarthy composes: "we can not yet identify in general what type of computational procedures we want to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by artificial intelligence researchers, see philosophy of expert system.).
^ The Lighthill report specifically criticized AI's "grand goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being identified to money only "mission-oriented direct research study, instead of fundamental undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the remainder of the employees in AI if the innovators of brand-new general formalisms would express their hopes in a more protected type than has often been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As defined in a basic AI book: "The assertion that machines could perhaps act smartly (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are really believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial general intelligence advantages all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020.
^ a b c "AI timelines: What do professionals in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and warns of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real risk is not AI itself but the way we deploy it.
^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential threats to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI must be a worldwide priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full range of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on all of us to make sure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based upon the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and forum.batman.gainedge.org GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of difficult tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers avoided the term artificial intelligence for worry of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite progress in device intelligence, synthetic general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of expert viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial D

Comentários